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Abstract. We present a theoretical framework for describing atomic short-range order and 
its effect upon such quantities as magnetization and hyperline fields in magnetic alloys. All 
electronic effects areaccurately described from a 'first-principles'. density functional formalism, 
within the restriction of a rigid, uniform lattice. These effects include the filling of the spin 
polarized electronic states, Fermi surfnce contributions, and the rearrangement of charge and 
changes to the magnetization as the chedwl composition  of the alloy fluctuates. We have 
calculated the magnetochemical response for bulk FemVls and CrjoFew magnetic alloys to 
compare to those obtained from spin polmized neumn scattering experimenk. We also show 
the utility of these response functions for investigating the changes in. for example. the momnts 
and hyperfine fields for multilayers with varying textures in the case of FeV. 

1. Introduction 

A challenging problem to study in metal alloys is the subtle interplay between compositional 
and magnetic interactions and the dependence of the magnetic properties on the local 
chemical environment. In these systems, magnetism is connected to the overall 
compositional ordering, as well as the local chemical environment, in a subtle and 
complicated way. For example, chemically ordered Ni-Pt is anti-ferromagnetic but its 
chemically disordered counterpart is ferromagnetic [l]. A close link between magnetic and 
compositional ordering is displayed in nickel rich Ni-Fe alloys. Ni75FQ5 is paramagnetic 
at high temperatures, it becomes ferromagnetic at about 900 K and then, when just 100 
K cooler, it chemically orders into the Ni3Fe LIZ phase 121. Similarly, with the advent 
of modern deposition techniques, artificial materials, such as compositionally modulated 
systems (CMS), also exhibit varied environmentally dependent properties, especially near 
interfacial regions [3, 4, 5, 61. 

Such physical  effects are very important to materials design and can be investigated by 
a variety of experimental techniques. Neutron or x-ray scattering experiments provide 
information regarding atomic short-range order, mean magnitude of local moments or 
lattice parameters, for example, while methods such as Mossbauer spectroscopy and nuclear 
magnetic resonance, which probe each atomic position separately, provide information, say, 
on changes of moments, isomer shifts and hyperfine fields due to local environment effects, 
such as atomic short-range order or clustering. 

It has long been recognized that electronic structure plays a crucial role in determining 
the states of compositional and magnetic order in metallic alloys. It is important then to 
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obtain a microscopic understanding of what gives rise to the effects and, equally, to predict 
the variety of behaviours that might occur. A quantitative understanding of the electronic 
mechanisms that cause the ordering is therefore important for the design of alloys with 
particular new physical properties. It follows that it is necessary to describe the many- 
electron system as accurately as possible when trying to determine the various correlations 
and local environmental effects in the alloys. 

From a theoretical point of view, the study of the electronic structure of alloys from a 
parameter free approach is of special importance since this allows us to describe not only 
the inherent atomic and magnetic correlations on an equal footing but also the electronic 
effects, or so-called driving mechanisms, responsible for the observed behaviour. Over 
the past decade or so significant progress has been made in this area. An ab initio 
description of metallic alloys based on the self-consistent field, Komnga-Kohn-Rostoker 
coherent potential approximation (SCF-KKR-CPA) formalism developed by some of us and 
other coworkers [2] has proved to be very successful in providing a starting point for a 
study of the atomic and magnetic correlations in a variety of metallic alloys. Recently, this 
mean field type theory has been extended and now it treats all electronic effects such as 
band filling, electrostatics (‘charge transfer’) and exchangecorrelation effects on an equal 
footing [7, 81, within the constraint that the underlying lattice is rigidly fixed. 

One of the problems of treating magnetism at finite temperatures in metals is finding 
an appropriate description of the magnetic interactions. On the one hand, there is a Stoner 
type, effective one-electron description of ferromagnetism suitable for metals; on the other, 
a picture of fluctuating ‘local moments’ historically more pertinent to magnetic insulators. 
One possible merger of  these two pictures is provided by the so-called disordered local 
moments (DLM) theory which describes electrons moving through effective magnetic fieIds 
characterizing local moments associated with lattice sites and which are set up by all the 
other electrons. This approach has been reasonably successful in describing the magnetic 
correlations in the paramagnetic state of metals and alloys 110, 11,12,9]. It has recently been 
used as a basis for a theory of atomic pair correlations in the compositionally disordered 
states of these systems [SI. Such a theory can deal with the paramagnetic regime of a 
compositionally disordered alloy which has a magnetically ordered ground state and can 
determine whether or not the compositional ordering transition temperature TFmp is higher 
than any magnetic ordering temperature T,maS. 

For situations where TFmp < TYg, magnetic structllre can have a profound effect upon 
the compositional ordering tendencies. As such, a ‘first-principles’ theory of compositional 
ordering in magnetic systems must include the effects arising from a spin polarized elecwonic 
structure. We can then study the effects of exchange splitting the electronic states on 
chemical ordering tendencies, as specified in wave-vector space by the compositional pair 
correlation function a(q) (or the Wanen-Cowley short-range order parameter), which is 
accessible from diffuse scattering experiments. A theoretical formalism for dealing with 
compositional correlations in magnetic alloys in which some of these electronic effects were 
included was developed by Staunton eta1 [2]. Our present work is an extension so that all 
the aforementioned electronic effects, in particular magnetism, are fully incorporated, and 
this mean field theory is further improved by the inclusion of Onsager cavity fields [13, 141 
to maintain sum rules not traditionally obeyed in mean field approaches. It is thus the 
generalization to ferromagnetic alloys of the work contained in 17, 81 which was applicable 
to non-magnetic alloys. 

Based on the same spin polarized electronic structure calculation, we will 
focus particularly on the local environmental effects on magnetizations using our 
magnetocompositional pair correlation function, T(q). It is one of those quantities, resulting 
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Local environment effects in magnetic alloys 1865 

from the underlying electronic structure of the disordered state, that can be deduced from 
spin polarized neutron scattering experiments [15]. The diffuse scattering of polarized 
neutrons from a magnetic binary alloy is a result of three processes: nuclear scattering, 
magnetic scattering and the spin dependent nuclear-nuclear scattering. For neutrons 
polarized (anti-) parallel, E = (-) 4- 1 to the magnetization, the cross-section per atom 
may be written [16] as: 

(1) 
Neglecting the difference in the experimental form factors of each alloy species, it can 
be shown that the first and third terms in equation (1) are proportional to the Warren- 
Cowley short-range order parameter a(q) and the longitudinal magnetic susceptibility x(q), 
respectively. x(q) is also available from within our formalism [l]. The interference term 
arising from the effects of cross-correlation (i.e., the magnetocompositional correlation, 
T(q)) may be extracted by measuring the scattering from both polarizations, i.e. 

As we shall show analytically within our approach T(q) can be separated into a product of 
correlation and response functions; namely, T(q) is found to be w(q)y(q), where y(q) is 
what we refer to as a moment-chemical response nnd will be discussed in detail. 

Through the technique of isotope substitution or null matrix scattering, both u(q) 
and x(q) can be separated from the sum of polarized cross-section measurements [15]. 
Then y(q) may be deduced indirectly, i.e. the dependence of the moment on the 
chemical environment may be extracted. Notably, by considering a linear superposition 
of perturbations and phenomenological parameters, Marshall [17] gives formulae of the 
same form for the scattering cross-section as the equations we derive to describe chemical 
environment effects. Extensions of this approach have been developed by Medina and 
Cable [16] and Hicks [18] to explain both the chemical and magnetic environment effects 
which are reflected in polarized neutron scattering experiments. Within our parameter free 
theory, various local quantities may be directly compared to experiment and to the available 
phenomenological models to give further insight into these environmental effects. 

In the next section, we present a brief review of the basic formalism and a derivation 
will be given for the compositional correlation function, a(q). This quantity measures the 
alloy’s tendency to order compositionally, or phase segregate, as temperature is lowered 
and can be directly compared with diffuse nuclear neutron (or electron and x-ray) scattering 
data. In section 3, we show the origin of the magnetocompositional pair correlation 
function;T(q) (or more importantly for this work y(q)), which provides a measure of 
the magnetic moments’  dependence^ on the local compositional environment and can be 
compared with polarized neutron measurements. We keep the details of the derivation brief 
since full accounts of the approach for paramagnetic alloys has been published elsewhere 
[7, 8,9, 19,201. We emphasize instead the places where the attributes of the ferromagnetic 
system come into play. In the penultimate section we describe our calculations of the 
magnetocompositional correlation functions for bulk Cr.ioFe30 and Fe87V13 alloys. Where 
available we compare these to experimental data. We also use our results to explore in a 
perturbative fashion the magnetic structures of some FeN multilayers and modulated alloys. 
The final section makes some concluding remarks. 

(du/dn)‘ = duNN/dQ + 6(duNM/dQ) +duMM/dQ. 

Adc/dQ = 2duNM/dn.  (2) 

2. Compositional ordering in magnetic alloys 

To put the discussion and derivation of the response functions on a clearer footing, we 
begin with a brief overview o f ’a  ‘first-principles’ treatment of the electronic structure 
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of a ferromagnetic alloy, A,Bl,, in the compositionally disordered state within the self- 
consistent field, Korringa-Kohn-Rostoker, coherent potential approximation (SCFKKR-CPA) 
formalism [21, 221. Calculations of the~electronic and magnetic structure and total energy of 
random alloys based on'the KKR-CPA formalism are quite commonplace now. We will base 
our approach for a linear response investigation of fluctuations in chemical and magnetic 
properties within chemically random alloys on this foundation. 

For finite temperatures, one must use the formalism of finite-temperature density 
functional theory. Within the present context of the KKR-CPA, this has been discussed 
in detail by Johnson et a1 [22] for electronic total energies (or grand potentials), and for 
response theory by Staunton et al [l]. Consider a many-electron system in an external 
potential Vat = Ci v?'(ri) set up by the nuclei in a crystal lattice and external magnetic 
field BeXL = E,  by'(^;), where r; = T - R;. R; denoting the position of a lattice site. 
It can be shown that in &grand canonical ensemble, at a given temperature T and 
chemical potential w ,  the equilibrium charge p ( r )  and magnetization m(r) densities are 
determined by the external potential and magnetic field. The correct equilibrium charge 
and magnetization densities are obtained by minimizing the Gibbs grand potential S2 via the 
vm'ational principle. Staunton et al [I] has shown via the variational spin density functional 
theory that the appropriate electronic grand potential can be written as 
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Q, is the exchange and correlation contribution to the Gibbs free energy. Here the effective 
single-particle Green function, 6, defines everything within the formalism. For example, 
the single-particle density of states is given by 

(4) 

is determined from a system of non-interacting electrons moving within an 

n(E) = --Im/ 1 dTTr P(T, T :  e ) ] .  
R 

We note that 
effective potential IF, i.e., 

It satisfies the following set of equations 

[ ( e  + q i 2 p m ) v ~ )  1 - ~ f i ]  ~ ( 7 ,  T'; 6) = i s (T  - T I )  

P ( T )  = --Im/ de f(e - w)Tr [G(T, T; G)] 

m(r) = --h/ dc f ( ~  - v)Tr [e G(T, T; E)] 

where i is a 2 x 2 unit matrix and r is the Pauli spin matrices. 
The equations (6), (7) and (8) illustrate the spin polarized, self-consistent, band structure 

basis to the many-electron phenomenon, which, in the limit of pure metals, produces the 
picture. of rigidly exchange split bands found in the traditional Stoner theory of metallic 
magnetism [23]. It is usual to make the local approximation for QXc [24]. Stocks and 
Winter [211 and Johnson et al 122, 2.51 have discussed in detail how this formalism may 
be applied to randomly disordered, paramagnetic and ferromagnetic alloys A,B1-,. A 
tractable scheme for calculating the electronic structure of an alloy of concentration c 

(6) 

(7) 

(8) 

1 
x 

1 
R 
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can be found in the mean field approach of the CPA. This is achieved by minimizing 
the configurationally averaged Gibbs grand potential with respect to the partially averaged 
charge and magnetization densities, (p)iA(B) and The CPA is used to  construct 
an effective medium. The motion of an electron through this medium approximates, on 
average, its motion through the compositionally disordered alloy. Again, details of the 
calculation of the electronic structure via the KKRXPA scheme can be found elsewhere (221. 

 next,^ we turn our attention to the compositional ordering in an alloy which has been 
successfully described in terms of concentration waves (26, 271. This method is a general 
framework (independent of the spatial extent of the effective interactions) for describing any 
compositional inhomogeneity, for instance, within an alloy in terms of a Fourier expansion; 
where the wave-vector specifies the type of ordering (or clustering). For example, a CqAu 
type (or L12 type) ordered alloy can be described by concentration waves with wave- 
vectors q = (1,0,0), whereas a phase-segregating alloy is signified by the q = (0, 0,O) 
wave-vector. We only require a convenient set of thermodynamic variables with which 
to work. Thus, any configuration of an alloy can be defined in terms of~site occupation 
variables, ( f j ] ,  where 6; is unity (zero) if the atom occupying lattice site i is A (B). With 
(...) referring to the thermodynamic average, the concentration at site j ,  cj. is (b), and 
represents the likelihood of an A atom occupying  site^ j .  The compositional pair correlation 
function f f j r  is then given by a j k  = p ( ( & - ( t ) ( b ) ) ,  where ,9 = ( k ~ r ) - ’ .  This is but one 
quantity that is accessible through diffuse scattering experiments and that we cancalculate 
from linear response about the KKR-CPA solutions in the high-temperature, disordered alloy. 
In this regard, it is a first-principles version of the concenlxation wave method developed by 
Khachaturyan [27]. (Within the first-principles approach, this theory has been generalized 
to an N-component case, with N > 2, for chemical short-range order only [28].) 

The approach necessary to proceed is similar to that for paramagnetic alloys elaborated 
by Staunton, Johnson and Pinski [7, 81 in which the electronic structure (band filling), charge 
rearrangement (‘charge transfer’) and exchange-correlation effects are all treated on equal 
footing. The essential difference is, of course, the spin polarized electronic structure of the 
alloy. Exchange splitting of the electronic states plays an important role from the outset. 
As such, it is not a trivial generalization of that previous work. 

We begin by writing down formally the grand potential for a system of electrons in a 
particular configuration of nuclei using the SDF theory, i.e., Q(cj]. At a given temperature 
T, by averaging over the compositional fluctuations with measure 

p{tiI = ~ X P ( - L J Q ( ~ I I ) / ~  exp(-pQ(ti)) (9) 
i b = O .  1 

and by using the Feynman-Peierls Inequality [29], the probability of finding an A atom on 
a particular site i is 

Here ( S T [ f j ] ) ~ , = l c ~ ~  is the average of the (inhomogeneous) grand potential over all 
configurations but with the.occupation on the ith site fixed at c; = 1 (0), either A or 
B, respectively. Such averages are readily available from the SCFKKR-CPA framework 171. 
Note that, in principle, the probability of occupation can vary from site to site but it is only 
the case of a homogeneous probability distribution, q = c, that can be tackled in practice 
with the KKR-CPA method. 

Using response theory and the fluctuation dissipation theorem, it is however possible 
to write down and calculate the various correlation functions appropriate to the system. 
Firstly, we will consider the response of the homogeneous system to the application of an 
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inhomogeneous external chemical potential, which couples to the occupation variables (ti}, 
such that a term 
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i 

is added to the grand potential Q(5;.). (q is the chemical potential difference such that the 
number of A and B sites remains constant.) This additional potential, different on every 
site, induces a change in the probabilities of occupation on every site (6y). This induced 
change on the ith site is written via (10) (to lowest order in the applied field about the 
homogeneous CPA) as 

(12) 
Of crucial importance for some of the later discussion in this paper, it also causes changes 
to the moments from site to site [Sp;@)(rj)] as well as rearranging the charge [&~f(~'(ri)). 
All three types of fluctuation are intimately connected, where the latter two are typically 
neglected in other models. 

The details of extracting expressions for the correlation functions from the underlying 
electronic structure are given in previous publications [7, SI. However, we note that in order 
to solve the resulting highly coupled equations [7], we make two simplifying assumptions. 
Firstly, we assume that Sp;"(ri) = Sp, A@) f A(B)(rj) where i d r i  fA(B)(ri)  = 1. We 
have numerically verified this form for a limited set of cases. Secondly, we choose 
(for reasons discussed in 171) to expand the charge fluctuations in terms of a basis set, 
i.e. Spf(B)(ri) = Cl=, pf'B'."fn(ri). The functions fn(ri) are chosen as even Legendre 
polynomials [7], which satisfy the normalization U]&, = Jdri fn(ri)fm(ri) with U, a 
constant. It is possible to formulate a theory of these interdependent fluctuations through 
the formal framework of an inhomogeneous CPA. 

As noted above, the compositional, charge and magnetic responses to application of 
inhomogeneous chemical fields. i.e., 

6Ci  N -OC(l  - C)((sG)iA - (8Q)iB). 

are all connected. This coupling is manifest in the changes to the CPA medium which occur as 
the inhomogeneous chemical potential is applied. In the presence of such applied chemical 
potential change, (Sui), the concentration changes (6q } are accompanied by a rearrangement 
of charge associated with each site, (G~;,A(B)}, and by changes to the moments from site 
to site, { S ~ ~ , A ( B ) ) .  Also, as is well known, there are self-energy effects, which can be 
very large, associated with the use of Weiss type mean fields. In an effort to improve our 
mean field theory, as before [7, 81, we have included Onsager cavity field corrections 
in the calculation of the various correlation functions. These corrections to the mean 
fields ensure that important sum rules associated with the (diagonal part of the) fluctuation 
dissipation theorem are satisfied. These alterations, inchding the Onsager corrections, are 
all interdependent as shown in the following expressions, where the superscript Sci refers to 
the self-energy effect of chemical fluctuations arising from the same site that we are trying 
to investigate. 

8Ci = @(!. - C)SV,""ty({SCj - Sc,!6"'], i8Pj.A - 6 P f : ) } ,  



see [7, 141. That these are reasonable expressions may be evidenced by following fact. If 
ui; is pc(1- c) as required by the fluctuation dissipation theorem to conserve the calculated 
diffuse intensity, then 6c?") = 8ci and there are no self-induced changes due to the site i 
on the site i .  see equations (16), (17). and (18). We shall see that this is indeed so. 

From the expressions for the induced changes in the charge and magnetization densities 
on each site, closed expressions for the various correlation functions can be obtained in 
terms of quantities based on the electronic structure of the homogeneously disordered alloy 
[7, 8, 301. Finally, since the homogeneous state has the symmetry of the lattice, we take 
the lattice Fourier~transforms of equations (13), (14). and (U), namely a(&, p;;@)(q) and 
~ ~ ( ~ ) ( q ) .  We obtain the following key equations: 

U ( q )  : B d l  - c) + - c){(Scc(q) - Ac)a(d 
f c[S?(q)Pi(q) + S~p'p:"(P)P~(4)1 + c ( q ) p A ( q )  

n 

+S;'(q)p~(q) - (ScP(q)  + A Q ) P ( d c ( q ) }  (22) 

pf(B)(q) = (ei$(q) - AC$)a(q) + [ e A , i ( B ) ( d & ( d  pp."'" + 'B,A(B)(q)&(q)] PP'"'" " 
+ciY$B)(q)pA(q) + $~&)((s)pB(q) - e$:(q)p(q)c(q) 

f x.f,$(B)(q)pA(q) + X&B)(q)pEI(q) - x&&(q)p(q)c(g)] 

(23) 

(24) 

pA@)(q) = (x.&)(d - AZB)Ia(q) + 'I [x.fr&)(q)pk(q) + xF$B)(q)Pk(q) 

where Scc(q) etc, eg$(q) etc and xztB)(q) etc are all determined by the electronic structure 
of the compositionally disordered, magnetic phase. Explicit expressions using the notation 
of 17, 81 are given for completeness in appendix A. P ( q )  = [cpft(q) + (1 - c)p;(q)]ul + 
AQu(q) is the q dependent variation from charge neutrality, or effective polarization 
caused by the short-range order, recall '1 is the normalization constant for the Legendre 
polynomials. (AQ is the net difference in charge when a site is occupied by an A atom 
and when it is then occupied by a B atom in the homogeneously disordered alloy; we shall 
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refer to this as the alloy 'charge kmsfer' even though it is not a precise definition.) C(q) 
is the lattice Fourier transform of the Coulomb interaction 1/[R; - Rjl. 

Similarly, the lattice Fourier transforms of the Onsager cavity corrections Ac, A:: 
and AGB) can be written as follows, 

M F Ling et a1 

p P . d  
fU16ifA(B)(d)1.1A(q) + ul$fA(B)(q)/lB(q) -CA(;) (q)P(q)c(q)] (26) 

A(B) - - @c(l - c) / dq [x.&B)(q)acqj + c(xr<B)('?)pi(q) + xifGB)(d&((s)) 
n 

+rrlx.&)(q)/lA(q) f U1 xL.$m)(q)pB(q) - xf&(q)p (g )c (q ) ]  (27) 

in which we have used similar prescriptions to set up these corrections as in [7, 191 in 
which the notion of Onsager cavity fields is incorporated in a consistent manner to the 
way in which we treat the electronic structure. It is important to note that the sum rules 
Ja (q)dq  = U;; = pc(l - c). JpfiB,(q)dq = 0 and J p ~ ( ~ ) ( q ) d q  = 0 are satisfied 
naturally by this construct and not imposed from the outset. The compositional correlation 
function a(q). or Warren-Cowley short-range order parameter, is obtained from the solution 
to the six equations shown above and has the Ornstein-Zernicke form 

S@)(q) is determined by the solution of the coupled equations for a(q), p'&)(q), pA(B)(q), 
Ac, AF$ and A& shown above and all equations are dependent on quantities determined 
by the electronic structure of the homogeneously disordered alloy (see appendix A). We note 
also that the conservation of the calculated diffuse intensity is not established by the naive 
integration of a(q) over all reciprocal space to force c(1 - c). The effective chemical 
interaction S")(q) - A' is dependent not only on the constant A' but also q dependent 
Onsager corrections arising from the charge and magnetization terms normally neglected in 
other mean field theories. This subtlety has been missed in the past. 

For interpretation purposes the 'interchange' energy S(*)(q) can ultimately be broken 
up into three components, i.e. 

The first term derives from the filling of the electronic states and has been discussed at length 
by several authors when spin fluctuation effects and other magnetic effects are neglected 
[26, 31, 321. It relates to the Hume-Rothery electron per atom ratio rule. The other 
two terms describe the contributions to the interchange energy which occur as the charge 
and local moment magnitudes rearrange as a consequence of the atomic short-range order. 
The second of these two terms describes an electrostatic ('charge transfer'4ike) piece and 
depends on the Coulomb interaction C(q) and an inverse screening length Iser which is also 
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determined by the electronic s6ucture. Such effects for alloys in which magnetic effects 
are unimportant have been discussed in the two earlier articles [7, 81 and for paramagnetic 
alloys in which spin fluctuation effects are handled to some extent by Ling et a1 [9]. For a 
ferromagnetic alloy, these quantities are dependent on the nature of the spin polarization of 
the electronic structure of the compositionally disordered alloy. 

3. Magnetocompositional effects 

In this section, we tum our attention to studying the response of the local magnetization 
to the of application of a concentration wave. Starting from equation (8) and considering 
the effects upon the CPA effective medium, we can define an expression for the change of 
magnetization at site i, 6pLi (~ i ) ,  caused by a change of concentration at site j ,  y i j ,  i.e. 

in which the bars refer to the homogeneous CPA averages. We shall designate the 
latter two quantities y: and yf. The lattice Fourier transform of this equation is 
(!.LA - pg) + C Y A ( ~ )  + (I - c ) y ~ ( q ) .  The quantities rA(q) and +yB(q) are available in 
terms of electronic structure dependent quantities of the form 

where ~ ; ( ~ , ~ ( q ) ,  ~ ; ~ ) ( q ) ,  K&B)c(q)  and ~ & ) ( q )  given in appendix B. It is important to 
note that the magnetization changes are accompanied by rearrangement of charge and this 
has been fully accounted for in the derivation of the above expressions. 

The above quantity is important because it determines the ‘local’ chemical environment 
effects to the moments. Moreover, the magnetocompositional correlation function T(q) ,  
i.e. 

VQ) = U / N )  C~B((fiitj) - (fii)(tj))exP(iq. ( ~ i  - Rj)) (32) 
i 

can be expressed in terms of’these response functions as 

It is the quantities Y(q) and a(q) that are determined in diffuse neution scattering, thereby 
indirectly finding y(q), ?s discussed in the introduction. 

3.1. Moment-compositional response 

If we focus upon y(q), we note that it describes quintessentially a non-rigid, itinerant 
moment effect due to changes in the compositional environment; hence, we will refer 
to ~ ( q )  as the moment-compositional (MC) response. The y;(B) (equation (30)) have a 
particularly revealing physical interpretation. They describethe change in the size of the 
moment on a site i in the lattice if it is occupied by an A (B) atom and if the probability 
of occupation is altered on another site j .  Thus, 

(34) A(B) A(B) yij Acj = yij (1 - C) 
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describes the change in the moment on the site i ,  occupied by an A (B) atom, if the site j 
in the alloy is now definitely occupied by an A atom. Similarly, 
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describes the changed if the site j is now definitely occupied by a B atom. In practice, 
equations (34) and (35) are used with the site i fixed and the label j running over each 
shell of nearest neighbours. Henceforth, only the shell label is necessary for the y .  Thus, 
if a, (bj)  represents the number of A (B) atoms in the j th  shell, then pACB) due to the new 
local environment (a,, bl; a*, bl;  ... ) is given by 

where 01 represents A (B) and runs over all pertinent shells. 
Consequently, once the MC response functions have been calculated, it is possible from 

equation (36) to investigate, in a perturbative fashion, the magnetic structure of alloys 
of varying chemical environment. Hence, it provides a complementary approach to that 
supplied by explicit cluster calculations [33]. In fact, albeit a perturbative method, it is a 
susceptibility based calculation and, as long as the induced moments are relatively small, a 
qualitative, if not quantitative, description may be possible. Thus, the magnetic properties 
of modulated or clustering alloys can be examined and alloys can be designed theoretically 
to have specified magnetic properties, without any further computational effort. 

The lattice Fourier transform of the y*@’(q), $@), may be estimated via equation (30) 
using a distribution of q vectors and, sometimes, is found to be fairly short ranged. That 
is, the functional form of 7(q)  is cosine-like between q = 0 and the zone boundary and the 
major contribution to yi comes from the first-nearest-neighbour shell. For alloys with this 
behaviour, the putative locality of the changes in the magnitude of the moments is given 
theoretical justification. On the other hand, any deviation from the cosine form implies that 
more shells of atoms will be involved in change in the moment. 

4. Applications 

To illustrate the information contained in the MC response functions, we present the results 
of calculations on two bulk F e V  and Cr-Fe alloys. These calculations were performed at 
lattice constants near the experimental ones, although we could have performed total energy 
calculations for the disordered alloy to determine the theoretical minimum as done by 
Johnson et a1 [22]. Recall that in some systems, such as the Invars, where magnetovolume 
coupling has a large effect, determination of the volume could be very important to y(q). 
Following the discussion of the M c  response function in these two alloys, we utilize the 
linear response equation, equation (36), to investigate layered structures. Further aspects of 
our calculations for these systems and several other alloys will be published elsewhere. 

4.1. The bulk alloys 

Figures 1 and 2 show the spin polarized electronic density of states of the compositionally 
disordered, magnetic Cr70Fe30 and Fes7V13 alloys. In the FenV13 alloy, average moments 
of 2 . 0 7 5 ~ ~  and - 0 . 7 2 4 ~ ~  are set up on the Fe and V sites, respectively. Average moments 
of 0 . 0 1 4 ~ ~  and 2 . 0 4 7 ~ ~  are found for the Cr and Fe sites in Cr,oFe30. Note that neither the 
majority nor the minority spin states are fully occupied and they are not rigidly exchange 
split. Notions of ‘covalent magnetism’ 1341 are relevant here. Both show the majority spin 



Local environment effects in magnetic alloys 1873 

states to be strongly affected by the compositional disorder in contrast to the minority spin 
states. (The opposite is the case for Ni-isFe~ for example [Z].) 

Figure 1. The compositionally averaged densities of the majority and minority states of Cr,oFe30 
and its resolution info Cr (solid) and Fe (dashed) components weighted by concentration, in units 
of states Ryd-'/(afom spin). 
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Figure 2. Same as in figure I, except for FenVlg and its resolution into Fe (solid) and V 
(dashed) components. 

We show the Cr and Fe components of y(q) in the qz = ~ O  plane for Cr70Fe30, with 
y=(q) in figure 3(a) and yFe(q) in figure 3(b). An incommensurate peak is evident in 
y d q )  which demonstrates the long-ranged nature of the dependence of the magnetization 
on Cr sites on their compositional environment. The incommensurate peak in y(q) means 
that it can only be fitted by many real space parameters, Y:'~). This is contrary to the 
case of FeaTV13 in which the dominant contribution come from the first two shells only, 
y y  = 0 . 0 9 6 ~ ~ ,  y p  = 0 . 0 4 7 ~ ~ .  yy  = - 0 . 1 6 5 ~ ~  and y: = -0.057~~. This short-ranged 
nature means that the magnetization of a variety of compositionally modulated F e V  alloys 
(compositionally modulated systems4Ms) can be simulated using these quantities and 
equations (34), (35) and (36). 

Cable and coworkers carried out some unpolarized neutron scattering measurements on 
a single crystal of Fe87V13 [35]. We found excellent agreement between our calculations of 
a(q) and these data [30]. We were also able to provide an analysis in terms of the underlying 
electronic structure of the alloy. Cable er al [36] have since carried out polarized neutron 
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Figure 3. Surface plot of the (a) Cr and (b) Fe component of the magnetocompositional function, 
q(q). of CqoFem at 600 K for ule qr = 0 plane in atomic units. 

scattering measurements on the crystal along the three high-symmetry directions, i.e. [loo], 
[ l l O ]  and [ l l l ] .  We compare the calculated ~ ( q )  = [ p ~  - pel + cyFe(q) + (1 - c)"/"(q) 
along the same symmetry directions with these data in figures 4(a), 4(b) and 4(c). In 
addition, the bulk measurement of the magnetic moment by Aldred [37] is also shown on 
the same plots at IqI = 0. Note that our calculation is in good, qualitative agreement 
with experimental data of Cable et al. In figures 4(a) and 4@), we can see the. cosine-like 
variation in both our calculation and experimental data. More strikingly, in figure 4(c), we 
have also reproduced the experimentally observed double peak along the [ill] direction. 
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We attribute the second peak to the effect of Fermi surface nesting with a ‘2k~(lll)’ nesting 
vector in the majority spin Fermi surface, which also characterizes the double peak in a(q) 
as detailed in [30]. It is important to note that the measurement of Aldred is not dependent 
on all the subtle effects that have to be accounted for when performing the spin polarized 
neutron scattering, e.g., effects of crystal surface (inhomogeneities), alignments of crystal 
axes to the spectrometer and. most importantly, the degree of polarization of the neutron 
beam. In this regard, we have very good quantitative agreement with the more confident 
q = 0 value and good agreement with the q dependence found in the neutron experiment, 
excepting that the difference in maximum and minimum values of the function seem larger 
in the experiment. 

Mirebeau er a1 1151 carried out polarized neutron measurements on polycrystalline 
Fe,VI-, alloys for a range of concentrations. They fitted their measured average moment 
disturbance 4; on the ith nearest-neighbour shell to an expression of the form: 

where A p  = JLA - pB is the difference of the average magnetic moments carried by iron 
and vanadium moments, respectively; N is the number of nearest neighbours in the ith 
shell. M ( K ) ,  A p  and @i are expressed in @B/atom and the scattering vector K in A-’. 
We use equation (37) to calculate M ( K )  using the average of our real space shell fits, 
i.e. @i = cy? + (1 - c)yy (i = 1, IO), and the results are presented in figure 5. Once 
again, ow M ( K )  agrees well with Aldred’s measurement at K = 0 and exhibits the same 
general oscillatory behaviour as the plot for Fe~853V0.147 in figure 1 of [15]. 

A good description of the moments of Fe,V,-, alloys has been given by several authors 
[38, 5, 39, 401 with very g o d  agreement to neutron scattering results. In particular, FeV 
alloys are ferrimagnetic, i.e. the vanadium polarization is antiparallel to the iron polarization. 
The magnetism in these alloys is different from. say, NiFe alloys because the moments on 
vanadium atoms are induced due to the large exchange splitting of the iron atoms. This 
leads to large local environment effects, which, again; may be investigated through the 
present formalism. 

Moments on both the iron and vanadium sites increase (decrease) in magnitude if their 
environment contains more iron (vanadium) atoms. Intuitively, one should expect this 
behaviour since the vanadium moment is an induced moment. The collapse of the moments 
at 70% vanadium in the FeV system is an immediate consequence of a vanadium rich 
environment [38, 5, 39, 401. Although a calculation using equation (36) results in a large 
reduction in the size of the iron and vanadium moments (for iron, 2 . 0 8 ~ ~  to 1 . 1 6 ~ ~  for a 
(0, 8; 0, 6) environment), it does not describe properly, being a perturbative method, the 
magnetic collapse that occurs in the VO.~OFQ.SO random alloy. That is, it is’improbable 
that perturbative extrapolation from a V-87% Fe alloy will give good results for a critical 
behaviour occurring in V-30% Fe alloy. However, no critical collapse of the moments is 
seen experimentally in the FeN a s .  As a result, FeN a s s  are the focus of our study 
using the MC response functions for this system. 

4.2. Compositionally modulated structures 

Obviously, physical properties of modulated structures will be influenced by the details of 
the various atomic configurations at the interfaces. It is also highly probable that alloying 
of some sort will occur at the CMS interfaces which will distinguish those atoms in and 
near the interface layers. As such, we use the MC response functions ‘to illustrate their 
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Figure 4. Vaiiation of magnetocompositional function, y(q)). for ferrimagnetic FegTVI) along 
the symmetry direction (a) [IWl. (b) [110] and (c) [ l l l ] ,  in units of !LB per atom. Stars: OUT 
results; triangles: data from Cable et nl [361; square: Aldred's measurement [37]. 



hcal  environment effects in magnetic alloys 

3.5 , 
1877 

A 

2.5 
0.5 1 .o 1.5 2.0 

K 
Figure 5. M ( K )  (in units of PB per atom) versus K ( i n ~ i - ' ) .  Solid line: OUI calculation using 
equation (37); square: Aldred's result 1371; triangles: points at K = 0.5. 1.0, 1.5 and 2.0 from 
the plot for Feu.s2Vo.ln in figure 1 of [El. 

utility for obtaining information on CMss. With the yi calculated, one must only provide a 
configurational environment in order to use equation (36). 

Recall these calculations are based on the disordered alloy where a global exchange 
splitting has been established. ~ ( q )  provides information on the local enhancement to the 
exchange splitting due to the change in the chemical environment Whether this should 
apply when one is investigating a CMS which has a dramatic change in the 'concentration' 
should be based on the strength of the perturbation. 

The FeV alloys are systems well known to exhibit environmental effects and have 
been studied extensively, both experimentally and theoretically, especially in superlattice 
structures. This is probably due to the fact that Fe and V have similar BCC lattice constants 
leading to the possibility of epitaxial growth with a simple lattice structure and of having 
ideal modulation between the Fe and V layers. In fact, x-ray diffraction analysis has 
shown that the FeN CMS have a [110] texture and Mossbauer experiments indicate. that the 
concenhation profile at the interface between Fe and V is sharp with alloying confined to 
three interface layers [41]. 

Several important chemical environment effects in FeN CMSS have been measured which 
may be compared with the present results. Using polarized neutron scattering, Hosoito et al 
[4] deduced a 30% reduction of the interface Fe moment in the thick FeN a s .  Assuming 
a weak vanadium moment, Jaggi et a1 [3] found no magnetically dead layers of Fe. In 
fact, as the number of Fe layers was decreased the average iron moment also decreased. 
Moreover, it was concluded from "V hyperfine field measurements that the interface layer 
was an alloy of Fea.~oVo.jo. 

Other theoretical investigations on FeN CMSs have been done; namely self-consistent, 
LAW electronic structure calculations have been performed by Hamada et ai [5] on an 
ideal FeV superlattice with the [loo] and the [110] textures. They found reduced moments 
for the interface iron layer and small negative moments on the interface vanadium. An 
interpretation based on local composition about the interface region was put forth from the 
FeV alloy model calculation of Hamada and Miwa [SI. 
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Also, Elzain et ~1 [42] have performed calculations on FeN superlattices based on 15- 
atom clusters for the magnetic moment and hyperfine field trends. Due to the size of the 
cluster, moments and hyperfine field values are discrepant with larger cluster calculations. 
More importantly, they found that the iron moments grow with a vanadium rich environment. 
This is in contradiction to our calculation and experiments on thick FeN superlattices. 
However, this disagreement may possibly be explained by noting that their calculations 
were on superlattices with ‘ultrathin’ iron layers, and that Wong et a1 [43] have observed 
two-dimensional behaviour in some ultrathin iron layers. In such a situation, it is possible 
that the present theory, based on bulk correlations, would break down. Also, calculations 
in which vanadium was taken as a central atom were not performed by Elzain et al. so their 
conclusions on vanadium were more uncertain and we make no comparison. Qualitatively, 
by considering the configurational environment (a,, bl; az, bz) for the BCC structure, we 
concluded previously for FeO.~,Vo.p that the magnitudes of both the iron and vanadium 
local moment increase (decrease) for increasing al (bl) and aZ (62). Recall, this is due to 
the negative polarization of the vanadium moments. 

A further bit of information may be obtained indirectly from the induced moments. 
Since the moments are related to the occupation of the majority and minority density of 
states, the reduction (growth) in the iron (vanadium) moments in the interface layers requires 
the transferring of electrons from the iron majority spin manifold to the vanadium minority 
spin manifold. This behaviour was observed in the calculation of Hamada et al. It will 
be more striking for the stacking with the less closely packed planes, such as the [loo] 
stacking. 

4.2.1. [I101 textures. In tables 1 and 2 the possible environmental configurations for any 
[110] modulation which involve contributions from only two nearest-neighbour shells are 
given, along with the induced and local moments on the iron and vanadium sites. For the 
[ 1101 texture, Hamada et a1 [5 ]  calculated two different stacking sequences, 3V/3Fe (V- 
V-Fe-Fe-Fe-V) and 5VEe (V-V-V-Fe-V-V), where in parentheses we denote the unit 
cell: For case 1, there are two inequivalent iron and vanadium sites. whereas for case 2, 
there are three inequivalent vanadium sites and one iron site. Their values are compared 
in table 3 with the values obtained from equation (36). Note that the qualitative trends 
agree well but, due to the higher iron concentration in our calculation, the local moments 
in the iron rich planes, i.e. Fe(I), Fe(JI) and Fe(U1). give much better agreement than those 
in the V rich planes. Also, the agreement is better for case 1 than case 2.  This is perhaps 
due to a breakdown of the present theory for ultrathin layers, i.e. the iron and vanadium 
atoms in the single layer may be exhibiting two-dimensional behaviour which would not be 
properly described. Overall, for thicker multilayers anyhow, if only magnetic moments are 
of interest, no further calculations are required to generate some other stacking sequence, 
in contrast to other electronic structure calculations. 

Table 1. Including effects from two nearest-neighbour shells only, the stacking sequence, 
environmental mnfigumtion. change of moment and total momens for sites in a central Fe 
plane are presented for an FeV multilayer with a [IlO] texture. 

Local stacking Environment A& pFc 

-Fe-Fe-Fe- (8. 0; 6, 0) 0.13 2.21 
-Fe-Fe-V- (6. 2; 4, 2) -0.15 1.92 
-V-Fe-V- (4, 4; 2, 4) -0.44 1.63 

, ,  
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Table 2. Including effects from two nearest-neighbour shells only, the stacking sequence, 
environmentaJ configuration. change of moment and total moments far sites in a central V plane 
are presented form FeV multilaycr with a [I101 texture. 

Local stacking Environment A@ @' 

-Fe-V-Fe- (4. 4; 4, 2) 0.57 -0.16 

4.22. [IOO] kxtwes. Hamada~ et a1 151 investigated a [IOO] texture with a stacking 
sequence given by three layers of V and five layers of Fe. Note, for this sequence, there are 
two (three) inequivalent vanadium (iron) atoms. Tables 4 and 5 provide similar information 
for the [loo] texture to that of tables 1 and 2 for the [110] texture, with the first three 
configurations relevant to the stacking sequence of Hamada et al which are shown as case 
3 in table 3. Note that the trend is again given well by this method of MC response 
with excellent agreement in the Fe rich planes: however, the moment oscillation that they 
calculated is not obtained. It would be possible to achieve a moment oscillation only if the 
second shell yz was of opposite sign. Or, equally true, it may be due to a slight error in 
the calculation of Hamada et al. Experimentally, Jaggi et al rule out the possibility of an 
oscillatory~ behaviour of the iron moments, .in agreement with our results. 

Table 3. A comparison is made behveen moments calculated via the response functions 
(left-hand column) and actual supercell electronic structure calculations (right-hand column) 
of Hamada et nl [SI. 

Sitehlane Case 1 C u e  2 Case 3 

Fe tn 1.92 1.90 1.63 1.33 1.78 1.62 
Fe (11) 2.21 2.20 
Fe (111) 

2.16 ' 2.39 
2.21 2.21 

Table 4. Including effects from two 'nearestheighbbur shells only, the stacking sequence, 
envimnmentd configuration. change of moment and total moments for sites in a central Fe 
plane are presented for an FeV~multilayer with a [IO01 texture. 

Local stacking Environment AII fiFc 

-Fe-Fe-Fe-Fe-Fe- (8, 0; 6, 0) 0.13 2.21 
-Fe-Fe-Fe-Fe-V- (8, 0; 5. I) 0.08 2.16 
-V-V-Fe-Fe-Fe- (4, 4; 5. I) -0.30 1.78 
-V-Fe-Fe-Fe-V- (8, 0; 4. 2) 0.04 2.12 
-Fe-Fe-Fe-V-Fe- (4, 4; 6. 0) -0.25 1.83 
-Fe-V-Fe-V-Fe- (0, 8; 6, 0) -0.64 1.44 
-Fe-V-Fe-V-V- (0, 8: 5. I )  -0.68 1.40 

We note that a [112] texture is also a possible modulation and, using y values from two 
nearest-neighbour shells, there are nine possible environments; however, here we simply 
note that it is possible to investigate the consequences of this texture as well using our 
approach. 
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Table 5. Including effececrs from two nearest-neighbour shells only, the stacking sequence, 
environmental configuration, change of moment and tow moments for sites in a cenual V plane 
are presented for an FeV multilayer with a [IOO] texture. 

Local stacking Environment A p  pv 

-V-Fe-V-Fe-V- (8. 0; 0. 6) 0.14 -0.58 
-V-Fe-V-FeFe- (8.0; 1 .5 )  0.08 -0.64 
-Fe-Fe-V-V-Fe- (4. 4: 2.4) 0.68 -0.04 
-F~-F~-V-FEFE (8. 0; 2.4) 0.02 -0.70 

4.2.3. Concepts of ‘local’ concentration. Hamada et a1 151 interpreted their LAPW results in 
terms of the local environment effects of Hamada and Miwa [5].  They proposed that alloy 
theory could be used to predict moments in superlattice structures if the magnetic moment 
of a given atom is determined within a certain ‘magnetic interaction’ distance, arbitrarily 
chosen to be the second-nearest-neighbour distance, and if the concentration of the alloy is 
regarded as the ‘local’ concentration defined by the percentage of next-nearest-neighbour 
vanadium. The number of vanadium atoms in the first-nearest-neighbour shell was used to 
determine the immediate environment. 

From the present results, it is now clear why their prescription worked well for FeV 
heterostructures. Firstly, the yl and y~ give the dominant contribution to the environmental 
effects, which justifies the Hamada et al assumption of a magnetic ‘interaction length’ 
confined only to the first-two-neighbour shells. Secondly, their calculation explicitly 
accounts for the effect on the moments due to various first shell occupancies. In the 
present case, this is done implicitly by y~ . Thirdly, the ‘local’ concentration they define 
gives information that is similar to the yz contribution to equation (36), that is, the second- 
shell environment and enhancement. So the nearest-neighbour environment and the ‘local’ 
concentration are really related to the perturbation Act and Ac2, respectively, about a given 
disordered state. Thus, the Hamada er a1 prescription should not necessarily work for other 
systems, such as CrFe where the number of contributing shells is large. The MC response 
determines its applicability. 

4.2.4. Interfacial alloying. Experimentally, it is most probable that the interfacial layers 
will not be ideal; hence some alloying should be expected within a few interface planes. 
This was the case experimentally for the FeV system, as previously mentioned. Applying 
standard band structure approaches to the interfacial alloying problem remains a rather 
difficult and computationally taxing problem. However, using the present theory, it is 
possible to estimate roughly the effects of alloying on the interfacial layers without any 
added computational effort. 

For example, in the [1101 texture of FeV, the three planes composing the ideal interface 
can be denoted by Fe-Fe-V, with the environment for the iron atom in the central and next 
layer given by ( 6 , 2  4,2) and (8,O; 6, 0), respectively. The induced interface and first-layer 
iron moments are 1 . 9 2 ~ ~  and 2 . 2 1 ~ ~  respectively. Assuming a random 50/50 alloying for 
the interface plane as given by experiment, i.e. Fe4FeV)-V, the environment for the iron 
atom in the interface and next plane changes to (4, 4; 3, 3) and (7. 1; 5, l), respectively, 
which results in reduced Fe moments due to a more V rich environment. Consequently, the 
iron moments are now 1 . 6 8 ~ ~  and 2.06.u~, respectively. Compared to the pure Fe moment 
the ideal (alloyed) interface sees a 7.5% (19%) decrease in the Fe moment. For contrast, 
an ordered 50/50 interface gives an Fe environment of (2, 6; 2, 4) and an Fe moment 
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of 1.44pg, i.e. a moment reduction of 31%. Jaggi er al measured an approximately 30% 
decrease. Therefore, in comparison to experiment, our calculation supports a near-ordered 
interface. This sort of comparison between experiment and theory should be beneficial in 
interpreting the actual properties of multilayers. 

4.3. Source of error 

The calculation of magnetic properties of alloys due to change in the chemical environment 
may be criticized in several ways. Firstly, the yi have been only determined approximately 
from a selection of q vectors (40 for FenVp and 45 for Cr70Fe30 in this work), and in 
some interfaces, including more values may change the inference about the number of shells 
contributing. Secondly, since the f i  were calculated from the disordered state (c = 0.87). the 
large deviations of 4 c l  from the disordered configurations needed to obtain the modulated 
structures might cause the perturbative approach to break down. Thirdly, the explicit volume 
dependence has been neglected. The CMS couldhave magnetic moments affected through 
differences in lattice parameters, which, in turn, should affect the yi , as is found in some 
NiFe thin films. Along the same line, displacement effects that remove the rigid-lattice 
constraint could also play an important role in systems that have differing atomic 'sizes'. 
Thus, mostly qualitative information should be expected. 

4.4. Hyperfure jield-chemical response 

Experimentalists have commonly assumed that the hyperfine fields (Hffs) for the species a, 
Ba, are related to the local magnetic moment pm and the average magnetic moment p. For 
example, Johnson et a1 [44] suggested that the HFF of Fe for several iron based, transition 
metal alloys could be reproduced by = a p ~ ,  + bp. These authors found, however, that 
no set of parameters a and b could satisfy this  relation.^ On the other hand, Erich [45] found 
that he could use this relation for NiFe alloys if he assume that the first (second) term was 
due to core (conduction) electrons. Theoretically, using a cluster KKR-CPA, Ebert et al[46] 
calculated HFFs with overall agreement with experiment and finds no such relation to hold. 

Moreover, for Fe,Nil-, alloys, Ebert et af found changes of the H f f  4BL with respect 
to configuration of each shell to be nicely additive. (Note, 4BL are equivalent to (GBISc)', 
in analogy to yi.) Consequently, they deduced that the hyperline field at the central site 
may be expressed by 

where & and are the actual and average number of iron atoms in this shell i ,  
respectively, and BC" is the CPA result. A primary result was that AB: does vanish 
for shells beyond the second-nearest neighbour; in fact, there is an oscillatory behaviour. 
Similar results were obtained for other iron based alloys. 

Two points are 'of major importance. Firstly, although it is not presented here, it is 
possible to derive within the KKR-CPA formalism the effect of changes of the concentration 
on any 'local' quantity related to the Green function, such as the hyperline fields, Knight 
shifts, isomer shifts, or the moments, as we have done. Without going through the derivation, 
one may infer the supposed relation for the hyperfine fields from the explicit calculations 
of Ebert et ai. This is fairly obvious &om equation (38) since the number of Fe atoms 
is proportional to concentration. Using the notation in their equations, we may rewrite 
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equation (38) as 
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, .  

' B, = B,CpA + AB: ((1 - c)ni f (-c)bi) (39) 

since c(ai + bi) is the average number of iron atoms in the ith shell.  this equation is 
entirely equivalent to that obtained for the moment-chemical response, equation (36). Of 
course, all the results of Ebert @tal follow. 

Secondly, it is clear from their results that the A B ,  i.e. (GBISc), are fairly linear in 
concentration. Notably, if we assume that the local moments scale with the concentration 
fluctuations in the same way as the local hyperfine fields, the results of Ebert er al can be 
interpreted as implying that equation (36) is useful when Sci is not small. Of course, in 
regions~of criticality this may no longer be true, and explicit calculations in that region will 
be necessary: As can be done for the moments via equation (36). equation (39) may then 
be used to investigate the effect of various environmental configurations,'such as those due 
to ASRO or to multilayer configurations, on the HFF. 

Other work on the environmental effects on the H W  has been done by Hamada et al [47]. 
By assuming ASRO to be only relevant in the first shell and the HFF determined by moments 
up to the second shell, they used ,an empirical approach based on their alloy moment 
calculations to investigate hyperfine field changes in FeV alloys and superlattices and to 
extract ASRO information from Mossbauer measurements. Overall good agreement was 
obtained between theory and experiment. Similar comparisons to that given in the previous 
section on moment responses may be made between our two approaches on m. Our 
results rely on ab initio electronic calculations and not on major simplifying assumptions 
nor empirical models; and, although much more computer intensive, they give a variety of 
other useful information, such as validity of the truncation of shells, which determine the 
applicability of the Hamada et al approach. 

5. Conclusion 

We have presented a formalism for the study of atomic short-range order and the dependence 
of magnetic properties upon the local chemical environment in ferromagnetic alloys. We 
have illustrated the approach by presenting details of calculation of Cr-Fe and Fe-V alloys. 
In the latter case, we have used the moment-compositional response functions to model 
roughly~ the magnetic structure of the FeV CMS. 

We reiterate that the mean field response of any quantity related to the Green function 
may be derived via the KKR-CPA. We have only presented results on the environmental 
response of the moments and outlined the approach for the hyperfine fields. Whereas the 
thermodynamic response functions give information on bulk phase changes, the 'local' 
response functions give information on the effects of changes in the local chemical 
environment. The correlations involved can be investigated and, as a result, the effects 
of alloying on various properties can be understood on a microscopic basis. It is envisaged 
that such calculations will aid in the interpretation of the experimental results on various 
alloys and CMSS and guide researchers in the creation of layered structures with specific 
properties. 

In the future, we plan investigations of temary alloys with the above theory. Besides 
helping understand the phase diagrams of such alloys, there come to mind several intriguing 
possibilities, such as (1) determination of HFF changes of nFe impurities in binary alloys, 
which may be used for characterization purposes; (2) allowing one component of the alloy 
to be vacancy and thereby studying the effects of a vacancy order/disorder; (3) investigating 
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qualitatively poisoning effects at metallic interfaces, such as occurs with sulphur on iron; 
(4) predicting magnetic behaviour for multilayers created from two different alloys, for 
example, FeMn/NiFe CMSs which exhibit high coercivity due to magnetic wetting. 
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Appendix A 

All the quantities in equations (221, (23) and (24) are defined analogously to those in the 
appendices of 1191. The main difference is that the spin indices now refer to the components 
of the spin polarized electronic quantities. All notation is the same as in 17, 8, 9, 19, 201. 

The components of the response of the CPA medium are 

where a ==A, B. The normalization integral, IL,~~*(Q), which describes the full response 
of the CPA medium has the form of a Bethe-Salpeter equation given by 

XTL, X L ? . L ~  X L % ( ~  (A4) 
where X a , t ( 4 )  = [(ti&&, -t;:i)-'+r5ii]-' with the angular momentum indices suppressed, 
and DOL.?($) is defined as [l + ( t~ ,~ tc ) , - t~ i l )~C.wl ] - ' ,  CY = A, B. tAcB).?(J.) are the scattering 
t matrices for the spin up and spin down components of the spin polarized electronic 
structure; t, and rC.Oo are, respectively, the t matrix and the diagonal component of the 
scattering path operator, r i j ,  for the CPA effective medium. The most important quantity to 
evaluate in the above expressions is 

RL,YL2.L3XLI(q)  = n ~ ~ J d k r ~ ; O , ~ ( I c ) ~ ~ P , ; ( k +  d (A5) 

(A6) c,w re.w T L l x L r . L 3 x 4 ( d  = RL,xLz,L,xLq(d - ~o.L,L, 0 . ~ 4  

which is the lattice Fourier transform of rc9'jrc.ji and S2~z is the volume of the Brillouin 
zone. 

We now provide detailed expressions for quantities specified in section 2. These 
are quantities involving single-site scattering terms and three integrals over the unit cell 



where cA = c and CB = 1 - c. We can now spell out explicitly the key terms. Firstly, part 
of the chemical interchange energy 

Scc(q) = -Im de f(e - j~)x ((DA,T + DA.L - DB-t  - DB.J)(zctW 0 
-I I L L ,  

LL' iT 

(A14 

is the entire contribution when 'band-energy' effects only are considered, i.e., we ignore all 
charge rearrangement effects. It is the generalization to a paramagnetic alloy of the direct 
correlation function of Gyorffy and Stocks who considered Fermi surface and band filling 
(or e/a) effects only. The remaining terms can be expressed in a similar way. 

v 
x T L x L ' . L , x L ? ( Q ) l ~ n c . L , x L I  

LlXLI 
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